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ABSTRACT 

Density Functional Theory-Based Nanostructure Investigation. ADRIAN KOPACZ 

(Northwestern University, Evanston IL 60208) MIHAI ANITESCU (Mathematics and 

Computer Science Division, Argonne IL 60439). 

The development of software for the investigation of chemical and mechanical properties 

of nanostructures promises to elucidate phenomena not observed in bulk materials. The 

method formulates a two-step approach to compute the electronic density distribution in 

and around a nanostructure and then the displacement of its nuclei. The Electronic 

Problem employs interpolation and coupled cross-domain optimization techniques 

through a process called electronic reconstruction. The Ionic Problem, within a 

quasicontinuum framework, relocates the nuclei of the nanostructure given the electronic 

density in the domain. The goal of this work is to implement an object-oriented 

framework that will provide testing mechanisms of the evolving code. Future work will 

focus on further enhancements to substantially increase the dimension of the 

nanostructures that can be simulated by using approaches that include accurate density 

functional theory (DFT) computation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



INTRODUCTION 

A typical nanostructure has dimensions in the range of 1~100nm. The electronic structure 

of such materials undergoes drastic changes at reduced dimensions. Their surface to 

volume ratio is relatively high resulting in new phenomena that are not observed in bulk 

materials where dimensions are on the order of microns. Nanoscale oxide structures 

illustrate new regimes of behavior in chemical reactivity [13], magnetic properties [14], 

charge transport [15], and optical properties [16, 17]. In order to better understand them, 

it is essential to take a look at the electronic composition of these nanostructures. 

To attain properties of a nanostructure, two important quantities must be calculated; the 

ground state energy, 0ε  and the ground state electron density, )(rρ . These two quantities 

can be obtained after solving the Schrödinger’s equation (1a), an approach that scales 

very unfavorably with the dimension of the problem.  
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where Ψ is the N-particle wave function; Η is the electronic Hamiltonian operator which 

includes terms for both the potential and kinetic energy; ε  is the energy of the system. 

 

Numerous schemes emerged on computing the needed quantities; among them is a well 

known Hartree-Fock approach [18]. The Hartree-Fock method is very computationally 

intensive and not practical beyond few metal atoms; scales on the order of N4, where N is 



the dimension of the problem, and for a more precise calculation can become as high as 

N8 according to the perturbation theory [19]. Density functional theory (DFT) [4] [5] 

emerged as a more feasible alternative; scales on the order of N3.  DFT became a method 

of choice for describing the ground state properties of metals, semiconductors, and 

insulators. One of the largest known ab-initio simulations by means of DFT have been for 

nonmetallic structures with up to 1,500 atoms [7]. Anitescu et al. [8] proposed a 

theoretical framework for the investigation of these nanostructures at a fraction of the 

cost which targets simulations of nanostructures comprised of hundreds of thousands of 

atoms are possible.  

 

The ground framework of the nanostructure methodology proposed by Anitescu et al. has 

been implemented using C++. The goal of this project is to implement an object-oriented 

framework that will provide testing mechanisms of the evolving code. The byproduct of 

the testing effort will also be to design modules for the generation of the new 

crystallographic structures as an input. For an output, the design of the module provides 

an output that is compliant with visualization software, such as TECPLOT, providing 

simple rotating, zooming and slicing facilities of the 3D electronic mesh and atomic 

structure. The ground framework of the module also supports animation for the iterative 

optimization approach. 

 

 

 

 



GENERAL FRAMEWORK 

 

Although the methodology utilizes a two-step approach, the two problems are 

independent of each other according to the Born-Oppenheimer assumption [6]. When the 

electronic problem is solved, the positions of the nuclei from the ionic problem are 

obtained. With the positions of the nuclei fixed, the electronic density distribution is first 

computed. The solution of the electronic problem then becomes input for the ionic 

problem during which the positions of nuclei are changed to minimize the total energy 

associated with the nanostructure, resulting in an iterative approach.  
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Figure 1: Electronic Problem.  Figure 2: Ionic Problem. 
 
 

Electronic Problem 

The electronic problem focuses on calculating the electronic density of the nanostructure. 

Having the positions of the nuclei, the electronic density is calculated in some of the 

domains, depicted in purple (figure 1). Each reconstruction sub domain is meshed and the 

electronic density is calculated at each node. Using 3D interpolation over the 

reconstruction domains, the electronic density in the rest of the domain is obtained. The 

interpolation takes into account the deformation of the structure through a deformation 



mapping. Since the value of the density in the reconstruction subdomains depends on the 

value of the electron density in the reconstructed sub domains a self consistency loop is 

employed. 

 

Ionic Problem 

The main focus of the ionic problem is to calculate the most stable shape of the crystal 

structure. Namely, to calculate the equilibrium configuration of a nanostructure, which is 

provided by the distribution of the nuclei that minimizes the energy. The whole domain is 

subdivided into atomic control volumes (figure 2). Within each atomic control volume 

(ACV), none or thousands of nuclei may reside. For example, if the atomic control 

volume is cubic, each nucleus inside the ACV is represented by a set of 8 nodes, which 

are referred to as control points. Only control points are used to impose equilibrium 

conditions. Following the quasi-continuum methodology [20], the position of each 

nucleus is determined relative to the position of control points via shape functions. 

 

 
MATERIALS AND METHOD 

 

The code for the object-oriented nanostructure investigation was written in C++. It can be 

compiled using either MS Visual Studio C++ .NET (7.1) or GNU C++ compiler 

(GCC/G++ 3.4.4). Build tools have been developed i.e. make/batch files, for both Linux 

and Windows platforms. It can be interfaced to any third party optimization software 

capable of solving bound constrained minimization problems being provided with the 

function gradient, initial and a penalty value. Other third party software that is required to 



run the code on a Linux platform includes TAO [9], PETSc [10] and MPICH2 [11]. On a 

windows platform, Cygwin [12] must be installed to emulate the Linux environment. 

 

 
Figure 3: Nanostructure investigation 
code structure. 

 
 

Currently, the structure of the code is divided into four stages: preprocessing, electronic 

problem, ionic problem and post processing (figure 3). In the preprocessing stage, a 

nanostructure simulation module is defined. A crystal structure of interest is defined by 

the user. A cubic atomic control volume is then automatically generated for the 

quasicontinuum approach. Then the crystal structure is then embedded inside the 

electronic uniform mesh. Next, the initial guess for the electronic density is provided. 

This could be a uniform distribution throughout the electronic problem. Finally, the 

deformation map is initialized to be the identity mapping. Once the nanostructure 

simulation module is defined, the electronic density distribution is then calculated. The 

electronic problem can be solved both internally and externally. While not yet supported, 

when solving externally, a specialized code such as NWChem or Gaussian03 can be 

utilized. Internally, instead of solving the system of integral equations for a given 

electronic density and the explicit form for the energy functional, using TAO one large 



optimization problem is solved. Independent of the type of solver invoked, the electronic 

density is the solution of the following optimization problem: 

];[min AE ρρ
ρ

     (2a) 

� = Ndrr)(ρ      (2b) 

where E  is the energy, ρ is the nuclear density, and N is the number of electrons 

present. Within the ionic problem, only the quasicontinuum component through the 

atomic control volumes has been implemented so far. In the postprocessing stage, output 

is generated for both the electronic and the crystal structure in two independent data files: 

mesh zones and crystal zones. Contour plots can be generated using third party 

visualization software, i.e. TECPLOT or MATLAB, to view the electronic distribution. 

 
API Interfaces 
 

 
Figure 4. Nanostructure investigation API 
interfaces. 

 
A special interface is implemented in nanostructure investigation code within the 

API_Reconstruction namespace (figure 4).  The interface’s object-oriented design 

encourages encapsulation of data and simplicity of use. A user is able to initialize all the 

parameters required for running the simulation code using third party optimization 

software, without having to understand or being exposed to the inner structure of the 

code. The API_NanostructureSim is the main class providing the required interface to 

TAO. The constructor of this class requires the size of the electronic mesh, number of 



electronic density cells in all x-, y-, z-directions, and lastly a collection of atoms in the 

nanostructure. The API_crystalstructure enables a user to define a custom heterogeneous 

crystal structure using the API_atom class where each atom may be assigned a different 

atomic number representing a given element. An API_atom is defined by location in 

space with its corresponding charge. There is also an option to create a bravais lattice; 14 

different bravais lattices are supported (table 5). A crystal structure may also be 

initialized via the element namespace, where the crystal structure and all the element 

parameters are already predefined based on the chosen element. Within the 

API_Reconstruction namespace it is possible to extend the interface. If a particular 

feature is in need, it is very straightforward to provide an interface for it.  

 

Bravais Lattices 
 
Crystalline lattices are distinct lattice types constituted by a regular array of identical 

units, periodically repeated in space [1]. In 1850, Auguste Bravais proposed a total of 

fourteen bravais lattices obeying the following criteria: unit cell is the repeating unit in 

the crystal, opposite faces of a unit cell are parallel and edge of the unit cell connects 

equivalent points. Bravais lattices can be grouped into seven crystal systems; cubic, 

tetragonal, orthorhombic, hexagonal, rhombohedral, monoclinic and triclinic. Within 

each crystal system, different possible types may exist; primitive (P), body-centered (I), 

2-face-centered (C) and face-centered (F). Classification of the fourteen bravais lattices 

into the seven crystal systems is shown. Each crystal system and type is described by 

different lattice constants a ,b , c and anglesα , β ,γ . 

 

 



Assuming the following convention: 

 

a is the magnitude of 1a  α is the angle between 2a and  3a  

b is the magnitude of 2a  β is the angle between 1a and  3a  

c is the magnitude of 3a  γ is the angle between 1a and  2a  

 
These lattices can be generated using three primitive translation vectors [2]. The 

equilibrium atomic positions coincide with the linear combination of the bravais 

translation vectors 1a  , 2a  and 3a .  

332211 anananRn ++=       (3) 

Appendix A defines primitive translation vectors for all bravais lattices. 
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   • cba ≠≠  

• 
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Table 1: 14 Bravais Lattices  
 
 
 
 
 
 
 
 
 
 



RESULTS 

 

One of the first 3D verification tests was the simulation of a single Hydrogen atom and 

4096 electronic density mesh elements (figure 5). The test ran on a single 2 GHz Mobile 

Intel Pentium M processor running XP Professional, compiled using GNU C++ compiler. 

Simulation took 4 minutes and 20 seconds carrying out 27 iterations using TAO for the 

electronic density to converge with the penalty tolerance of 0.0001. Simulation of a cubic 

primitive unit cell (figure 6) comprised of 8 atoms and 6859 mesh nodes ran for 14 hours 

and 12 minutes carrying out 54 iterations to converge. The same simulation was run on a 

fine mesh but with a smaller electronic density mesh domain. Although the simulation 

ran longer, the results unexpectedly degraded due to the artifacts that emerged at the 

boundaries (figure 7). In order to obtain good results, it is crucial to define a large enough 

discretization domain. Small domains lead to artifacts close to the boundaries. 

 

 

 

 

 

 

 
Figure 5: Single atom 
simulation. 

 Figure 6: Cubic 
primitive, unit cell 
simulation (coarse). 

 Figure 7: Cubic primitive, 
unit cell simulation (fine). 

 
 
One of the bigger simulations that were run took about 14 hours to complete and 12 

iterations with the penalty tolerance of 0.001. The simulated crystal structure was a cubic 

face-centered comprised of 63 crystal atoms and 59319 mesh elements.  The electronic 



density mesh domain was not as big as it should have been, resulting in artifacts at the 

boundaries (figure 8). 

 

 
Figure 8: Cubic face-centered, 2 unit cells in 
x-, y-, and z-directions simulation. 

 
 
 

DISCUSSION AND CONCLUSION 

 

At present, there is still a great deal of work that must be done. First, the code should 

include automatic mesh refinement of the electronic density mesh, for the electronic 

problem. This will save a tremendous amount of computing time. As it can be seen in 

figure 6, computing the electronic density with the same accuracy inside the whole 

domain is inefficient. A fine mesh around the nuclei and a coarse mesh everywhere else 

are essential. Next in order is implementing an interface for use of any higher order shape 

function in the ionic problem. Following the quasi-continuum methodology, since the 

positions of a nucleus are determined relative to the position of control points using shape 

functions; it is important to specify a custom shape function. It is also vital to parallelize 

the main subroutines of the code using MPICH2. This will significantly speed up the 



computation time. Another goal is to extend the modeling capabilities by introducing 

more elaborate energy functionals and more sophisticated DFT models for computing the 

electronic density. This is an active area of research in the quantum chemistry 

community.  
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APPENDIX 
 
A. Primitive vectors for bravais lattices. 
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